Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MycoKeys ; 104: 9-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665970

RESUMO

This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicolahongheensis, Periconiakunmingensis and Trichobotryssinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding.

2.
Am J Transl Res ; 16(2): 432-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463578

RESUMO

BACKGROUND: Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS: Bioinformatics and molecular experiments. RESULTS: Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION: This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.

3.
Environ Geochem Health ; 46(4): 142, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507144

RESUMO

Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined. HF-FCNPs were spherical in shape with high percentage of copper inducted into the NPs. HF-FCNPs inhibited mammalian glucosidases [maltase (IC50: 548.71 ± 61.01 µg/mL), sucrase (IC50: 441.34 ± 36.03 µg/mL), isomaltase (IC50: 466.37 ± 27.09 µg/mL) and glucoamylase (IC50: 403.12 ± 14.03 µg/mL)], alpha-amylase (IC50: 16.27 ± 1.73 µg/mL) and acetylcholinesterase [AChE (IC50: 0.032 ± 0.004 µg/mL)] activities. HF-FCNPs showed competitive inhibition against AChE, maltase and sucrase activities; mixed inhibition against isomaltase and glucoamylase activities; whereas non-competitive inhibition against α-amylase activity. HF-FCNPs showed zone of inhibition of 16 ± 2 mm against S. mutans at 100 µg/mL concentration. HF-FCNPs inhibited biofilm formation of dental pathogen, S. mutans. SEM and confocal microscopy analysis revealed the disruption of network formation and bacterial cell death induced by HF-FCNPs treatment on tooth model of S. mutans biofilm. HF-FCNPs efficiently removed hexavalent chromium in pH-independent manner and followed first order kinetics. Through Langmuir isotherm fit the qmax (maximum adsorption capacity) was determined to be 62.5 mg/g. Further, HF-FCNPs removed both anionic and cationic dyes. Altogether, facile synthesis of HF-FCNPs was accomplished and its biological (enzyme inhibition and antibiofilm activity) and environmental (catalyst to remove pollutants) applications have been understood.


Assuntos
Hibiscus , Nanopartículas , Animais , alfa-Glucosidases/metabolismo , Glucana 1,4-alfa-Glucosidase , Corantes , Cobre , Hibiscus/metabolismo , Ferro , Acetilcolinesterase , Flores/metabolismo , Oligo-1,6-Glucosidase , Sacarase , Cromo , Biofilmes , alfa-Amilases , Mamíferos/metabolismo
4.
Sci Rep ; 13(1): 21535, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057446

RESUMO

Grass pea (L. sativus L.) is a widely cultivated crop worldwide, forming a symbiotic relationship with nitrogen-fixing rhizobia. Glyphosate is commonly used by farmers for weed control during agricultural processes. However, the application of this chemical herbicide negatively impacts soil fertility by affecting the nitrogen-fixing rhizobia. This study aimed to assess the effects of glyphosate on rhizobia isolated from healthy and robust Grass pea plants. Specifically, Grass pea plants exhibiting vigorous growth and a healthy appearance were intentionally selected to isolate rhizobia from their root nodules. The isolated rhizobia were then characterized based on their morphological features, biochemical properties, and resistance to abiotic traits. Rhizobial isolates from grass peas exhibited Gram-negative, rod-shaped morphology, milky colony color, and variable colony sizes. Additionally, the majority displayed smooth colony surfaces on yeast extract mannitol agar medium. Based on morphological and biochemical characteristics, the isolates could be grouped under the genus Rhizobium. Optimum growth conditions for these isolates were observed at temperatures between 28 and 38 °C, pH levels ranging from 5 to 8, and salt (NaCl) concentrations of 0.5% and 1%. At a concentration of 20 mL L-1, glyphosate inhibited 5.52-47% of the Rhizobium population. The inhibition percentage increased to 17.1-53.38% at a concentration of 40 mL L-1. However, when exposed to a higher concentration (60 mL/L) of glyphosate, 87% of the isolates were inhibited. The number of colonies after glyphosate exposure was significantly dependent on concentration, and there were notable differences between treatments with varying glyphosate concentrations (p < 0.05). Glyphosate negatively impacted the survival of grass pea rhizobia, leading to a reduction in the Rhizobium population (CFU). However, the effect varied between Rhizobium isolated from grass pea root nodules.


Assuntos
Lathyrus , Rhizobium , Rhizobium/fisiologia , Pisum sativum , Simbiose , Nitrogênio , Nódulos Radiculares de Plantas
5.
Chem Biodivers ; 20(12): e202301534, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984454

RESUMO

Cyclophosphamide (CYP) is commonly used to treat cancer of the ovaries, breast, lymph, and blood system and produces interstitial cystitis (IC) via its urotoxic metabolite: i. e., acrolein. The present study was aimed to investigate the uroprotective effect of campesterol (a steroidal phytochemical) in cyclophosphamide induced IC. IC was induced by CYP (150 mg/kg, i. p.) in rats. The Enzyme linked immunosorbent assays for oxidative stress markers and Polymerase Chain Reaction (PCR) for inflammatory cytokines were carried out. The Tissue Organ Bath Technique was used for the evaluation of the spasmolytic effect of campesterol. Different pharmacological antagonists have been used to explore the mechanism of action of campesterol. Treatment with campesterol (70 mg/kg) reduced nociception (55 %), edema (67 %), hemorrhage (67 %), and protein leakage significantly (94 %). The antioxidant activity of campesterol was exhibited by a fall in MDA, NO, and an elevation in SOD, CAT, and GPX levels. Campesterol presented anti-inflammatory potential by decreasing IL-1, TNF-α, and TGF-ß expression levels. Histologically, it preserved urothelium from the deleterious effect of CYP. Campesterol showed a spasmolytic effect by reducing bladder overactivity that was dependent on muscarinic receptors, voltage-gated calcium and KATP channels, and cyclo-oxygenase pathways. In silico studies confirmed the biochemical findings. The findings suggest that campesterol could be valorized as a possible therapeutic agent against cyclophosphamide-induced interstitial cystitis.


Assuntos
Cistite Intersticial , Cistite , Ratos , Animais , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/tratamento farmacológico , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Cistite/patologia , Simulação de Acoplamento Molecular , Parassimpatolíticos/efeitos adversos , Ciclofosfamida
6.
Front Microbiol ; 14: 1188743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323910

RESUMO

The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.

7.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335116

RESUMO

Pelargonium graveolens, rose-scented geranium, is commonly used in the perfume industry. P. graveolens is enriched with essential oils, phenolics, flavonoids, which account for its tremendous biological activities. Laser light treatment and arbuscular mycorrhizal fungi (AMF) inoculation can further enhance the phytochemical content in a significant manner. In this study, we aimed to explore the synergistic impact of these two factors on P. graveolens. For this, we used four groups of surface-sterilized seeds: (1) control group1 (non-irradiated; non-colonized group); (2) control group2 (mycorrhizal colonized group); (3) helium-neon (He-Ne) laser-irradiated group; (4) mycorrhizal colonization coupled with He-Ne laser-irradiation group. Treated seeds were growing in artificial soil inculcated with Rhizophagus irregularis MUCL 41833, in a climate-controlled chamber. After 6 weeks, P. graveolens plants were checked for their phytochemical content and antibacterial potential. Laser light application improved the mycorrhizal colonization in P. graveolens plants which subsequently increased biomass accumulation, minerals uptake, and biological value of P. graveolens. The increase in the biological value was evident by the increase in the essential oils production. The concomitant application of laser light and mycorrhizal colonization also boosted the antimicrobial activity of P. graveolens. These results suggest that AMF co-treatment with laser light could be used as a promising approach to enhance the metabolic content and yield of P. graveolens for industrial and pharmaceutical use.


Assuntos
Anti-Infecciosos , Micorrizas , Óleos Voláteis , Pelargonium , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Minerais , Micorrizas/metabolismo , Óleos Voláteis/química , Pelargonium/química
8.
Biofouling ; 35(1): 89-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835535

RESUMO

In the present study, the antimicrobial and antibiofilm efficacy of toluidine blue (TB) encapsulated in mesoporous silica nanoparticles (MSN) was investigated against Pseudomonas aeruginosa and Staphylococcus aureus treated with antimicrobial photodynamic therapy (aPDT) using a red diode laser 670 nm wavelength, 97.65 J cm-2 radiant exposure, 5 min). Physico-chemical techniques (UV-visible (UV-vis) absorption, photoluminescence emission, excitation, and FTIR) and high-resolution transmission electron microscopy (HR-TEM) were employed to characterize the conjugate of TB encapsulated in MSN (TB MSN). TB MSN showed maximum antimicrobial activities corresponding to 5.03 and 5.56 log CFU ml-1 reductions against P. aeruginosa and S. aureus, respectively, whereas samples treated with TB alone showed 2.36 and 2.66 log CFU ml-1 reductions. Anti-biofilm studies confirmed that TB MSN effectively inhibits biofilm formation and production of extracellular polymeric substances by P. aeruginosa and S. aureus.


Assuntos
Biofilmes/efeitos dos fármacos , Fotoquimioterapia/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Dióxido de Silício/química , Staphylococcus aureus/efeitos dos fármacos , Cloreto de Tolônio/farmacologia , Antibacterianos/farmacologia , Luz , Nanopartículas Metálicas/química , Nanopartículas , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Estafilocócicas/tratamento farmacológico
9.
Photochem Photobiol Sci ; 18(2): 563-576, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30601523

RESUMO

Catheter-related bloodstream infections (CRBSIs) are one of the leading causes of high morbidity and mortality in hospitalized patients. The proper management, prevention and treatment of CRBSIs rely on the understanding of these highly resistant bacterial infections. The emergence of such a challenge to public health has resulted in the development of an alternative antimicrobial strategy called antimicrobial photodynamic therapy (aPDT). In the presence of a photosensitizer (PS), light of the appropriate wavelength, and molecular oxygen, aPDT generates reactive oxygen species (ROS) which lead to microbial cell death and cell damage. We investigated the enhanced antibacterial and antibiofilm activities of methylene blue conjugated carbon nanotubes (MBCNTs) on biofilms of E. coli and S. aureus using a laser light source at 670 nm with radiant exposure of 58.49 J cm-2. Photodynamic inactivation in test cultures showed 4.86 and 5.55 log10 reductions in E. coli and S. aureus, respectively. Biofilm inhibition assays, cell viability assays and EPS reduction assays showed higher inhibition in S. aureus than in E. coli, suggesting that pronounced ROS generation occurred due to photodynamic therapy in S. aureus. Results from a study into the mechanism of action proved that the cell membrane is the main target for photodynamic inactivation. Comparatively higher photodynamic inactivation was observed in Gram positive bacteria due to the increased production of free radicals inside these cells. From this study, we conclude that MBCNT can be used as a promising nanocomposite for the eradication of dangerous pathogens on medical devices.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Azul de Metileno/química , Azul de Metileno/farmacologia , Nanotubos de Carbono/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Técnicas de Química Sintética , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Azul de Metileno/síntese química , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA